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Abstract

This study presents a novel framework that bridges deterministic numerical algorithms with
computational finance to support interpretable machine learning applications in cryptocurrency
analysis. By applying Newton’s method, the Trapezoidal Rule, and a hybrid Euler — Adams-
Bashforth solver, we generate structured numerical features that capture convergence, integration
precision, and differential dynamics, respectively. These feature vectors are constructed from both
synthetically generated sequences and real AVAX-USD log return data, enabling a direct
comparison between theoretical numerical behavior and market-driven fluctuations. A
deterministic labeling rule, based on the parity of the integer sum of the features, defines class
boundaries with geometric regularity, allowing the K-Nearest Neighbors classifier to operate in a
feature space shaped by mathematically grounded transformations. The results reveal that
classical numerical methods, when applied to financial time series, produce stable, class-separable
patterns that are well-suited for local classification and boundary interpretation. Through decision
boundary visualization, error convergence analysis, and joint feature interaction plots, the paper
demonstrates that numerical approximation techniques can illuminate latent structural signals in
crypto price behavior. This framework advances the integration of scientific computing and data-
driven finance, offering a new paradigm for understanding digital asset dynamics through the lens
of deterministic modeling.

Keywords: Deterministic Numerical Methods; Computational Finance; Cryptocurrency Analysis;
Feature Engineering; Scientific Computing
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1. Introduction
1.1. Background and Motivation

In the evolving landscape of machine learning and data-driven modeling, the construction of
structured, interpretable, and mathematically principled feature spaces has regained importance.
While modern algorithms such as deep neural networks excel in extracting features from raw data
through hierarchical representation learning (Goodfellow, Bengio, & Courville, 2016), their
opaque internal mechanisms often lack transparency—raising concerns in high-stakes decision-
making contexts (Doshi-Velez & Kim, 2017; Lipton, 2018; Rudin, 2019; Molnar, 2022). In
contrast, classical numerical methods, such as Newton’s method, the Trapezoidal Rule, and
multistep solvers like the Adams-Bashforth method, provide deterministic convergence,
quantifiable error bounds, and strong theoretical guarantees (Atkinson, 1989; Burden & Faires,
2011; Butcher, 2016; Hairer & Wanner, 1991, Iserles, 2008). These properties, long valued in
scientific computing (Henrici, 1974; Heath, 2002; Quarteroni, Sacco, & Saleri, 2007), position
them as powerful tools for structured feature engineering in machine learning frameworks.

This paper is motivated by the hypothesis that the numerical behavior embedded in these
classical algorithms—specifically convergence stability, integration precision, and dynamic
trajectory generation—can be directly repurposed to construct feature vectors that support
supervised classification. The goal is to bridge a gap between deterministic numerical
computation and flexible machine learning classifiers such as K-Nearest Neighbors (Cover &
Hart, 1967, Dasarathy, 1991; Altman, 1992; Peterson, 2009), whose geometric foundations are
well-suited for exploring local structure in data. Furthermore, by embedding these methods in
both simulated and real-world data contexts, such as financial time series derived from AVAX-
USD, we aim to evaluate the practical viability and interpretive value of numerical methods as
data transformation engines.

1.2. Novelty

The key novelty of this study lies in transforming classical numerical analysis algorithms—
root-finding, quadrature, and ODE solvers—into systematic feature generation tools for
classification problems. Unlike traditional statistical descriptors or automated embeddings, the
proposed approach leverages mathematical convergence behavior to create features with traceable
analytical origins (Deuflhard, 2011, Epperson, 2013; Sauer, 2017, LeVeque, 2007). The
methodology explicitly constructs three feature groups using Newton’s method to approximate
V2, the Trapezoidal Rule to estimate definite integrals of sine functions, and the Euler-Adams-
Bashforth scheme to solve the ODE dy/dx=x+y. These transformations capture distinct numerical
textures—rapid fixed-point convergence, smooth integrative summation, and compounding
differential growth—which are typically underrepresented in the feature spaces of conventional
machine learning pipelines (Griffiths & Higham, 2010; Golub & Ortega, 2014, Stoer & Bulirsch,
2002).
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To complement these features, we introduce a deterministic labeling rule based on the parity of
the integer part of the sum X;+X;+X;. This labeling mechanism allows for explainable boundary
formation while preserving numerical continuity, thereby avoiding the stochastic variability often
associated with empirically assigned labels. This formal and reproducible labeling approach
provides an ideal testbed for evaluating geometric learning behavior in interpretable models such
as KNN (Weinberger & Saul, 2009). Furthermore, this novel synthesis of numerical signal
construction and classification logic expands the understanding of how algorithmic behavior in
numerical analysis can map onto data structures suitable for learning tasks.

While the framework necessarily illustrates classical numerical methods such as Newton’s
root-finding or the Trapezoidal Rule, these derivations serve only as a foundation. The scholarly
contribution lies not in reintroducing these algorithms but in repurposing their convergence, error,
and dynamic behaviors as structured features for classification in financial contexts. To our
knowledge, this is the first work to formalize numerical solvers as feature generators and to
demonstrate their geometric separability when applied to cryptocurrency log returns. This
distinction ensures that the paper advances methodological innovation beyond pedagogical
demonstration.

1.3. Contribution

This paper offers a new framework for structured feature engineering rooted in the
deterministic behavior of classical numerical methods. It establishes that methods long considered
purely computational—such as Newton’s iterative solver, Trapezoidal integration, and Adams-
Bashforth ODE approximations—can serve as generative mechanisms for highly structured, low-
dimensional feature vectors. These vectors demonstrate desirable learning properties: low intra-
class variance, bounded global error, and high geometric separability in classification contexts
(Boyd & Vandenberghe, 2004; Higham, 2002; Ralston & Rabinowitz, 2001). We show that when
these features are applied to both synthetic datasets and real AVAX-USD financial data, they
maintain mathematical interpretability while enabling robust performance in simple learning
models.

The contributions of this work intersect with emerging efforts to create transparent and
explainable machine learning systems (Gilpin et al., 2018; Shalev-Shwartz & Ben-David, 2014),
and complement a growing interest in interpretable geometry-driven approaches to data
construction (Tian, 2024a; Tian & Deng, 2024¢; Tian et al., 2024b, 2024d). By formalizing the
numerical roots of feature generation, the paper establishes a principled foundation for
deterministic classification pipelines and opens new pathways for pedagogical and applied
research in hybrid numerical-learning methodologies.

1.4. Construction

This paper proposes a novel classification framework in which features are derived from
deterministic numerical methods rather than stochastic or empirical data sources. By applying
classical algorithms—Newton’s method, the Trapezoidal Rule, and the Adams-Bashforth
solver—we generate structured, interpretable data that reflect the underlying mathematical
behavior of each algorithm. These numerically constructed features are used as input for
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classifier, with labels assigned through a deterministic parity rule based on the aggregate behavior
of the feature groups. This design enables reproducibility, analytical traceability, and pedagogical
insight into the behavior of numerical approximations within machine learning pipelines.Section
2 introduces the numerical feature generation process, detailing the construction of the three
variable groups. corresponding to root-finding, numerical integration, and ordinary differential
equation solvers, respectively.Section 3 reports experimental results, including accuracy metrics,
geometric analysis of the feature space, and a discussion on the interpretability of results derived
from numerical structures.Section 4 is disscussion and finally, Section 5 concludes the study with
reflections on the contributions, limitations of the current framework, and directions for future
research, particularly in extending the approach to more advanced models and hybrid symbolic-
ML architectures.

2. Methodology

This section presents a comprehensive mathematical formulation of the numerical classification
framework. The process includes constructing input vectors using Newton’s method, the
Trapezoidal Rule, and the Adams-Bashforth method; assigning labels based on a deterministic
rule; and performing classification using KNN. Each method contributes a unique mathematical
transformation to construct features X1, X2, X3 which are used for classification in a structured
feature space.

2.1. Newton’s Method for Root-Finding (X;)

This paragraph describes how we use Newton’s method to generate the first feature group X
by solving the equation f(x)=x’-2, whose root is V2. Newton’s method iteratively refines
approximations to this root using its derivative. The convergence is quadratic and fast, and this
process yields a vector of approximated root values, forming a numerically stable and smoothly
converging feature space.

We begin with the function f(x) whose root we want to find:

f)=*=2 (1)
Newton’s method requires the derivative of f{x):
S ()=2x )
General Newton update rule:
oSG
xn+1 xn f(xn) (3)
Plug in (1) and (2):
x3-2
X1 =X~ “4)

simplifies to a well-known iteration for computing square roots:

xun=3 (0t ) 3)
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With x,=1 the iterations yield:
x1=1.5 %,=1.4167,x;=1.4142

As n—o the sequence converges to:

limx,=v2

n—o

Quadratic convergence guarantee:
12| <2
The converged sequence is stored as the first feature group:
Xi={x, L ERM

2.2. Trapezoidal Rule for Numerical Integration (X3)

(7)

(&)

©)

This section explains how to build the second feature group X, using the Trapezoidal Rule to

approximate the integral of the sine function over the interval [0,z]. The rule is second-order

accurate and well-behaved. The trapezoidal sum creates a vector of approximated integrals,

suitable for representing smooth, continuous dynamics such as sensor data or area-under-curve

measurements.
Define the target function and integration limits:
f)=sin(x), a=0, b=x

The interval is divided into nnn subintervals of equal width:

T

n

The i1-th point in the partitioned domain is:
let: x=a+ih, i=0,...n
We approximate the integral using:
h -
T,= [fa)+2 X5 f ) +B)]

Evaluate known function values
Since sin(0)=0and sin(n)=0the boundaries contribute zero:

Define: sin(0)=0, sin(x)=0,
For n=4 the approximation becomes

Ty== [2(sin(a4) +sin(z/2) +sin(3a/4) )|

Exact integral for comparison
The true integral of sin(x)from 0 to m is:

lim, . T,= fonsin (x)dx=2

Error bound for Trapezoidal Rule
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_ (b-a)’

E=—C01Q). ¢€(ab) (16)

Construct the feature group
When using multiple values of n, the resulting approximations form the feature group:

Xo={T,},2 ERM (17)
2.3. Euler and Adams-Bashforth Methods for ODE Solving (Xj3)

In this paragraph, we describe the generation of the third feature group Xj through numerical
solution of an ordinary differential equation dy/dx=x+y. The Euler method initializes the sequence,
and the Adams-Bashforth 2-step method improves the solution with higher-order accuracy. This
feature group models dynamic or temporal behavior, providing a diverse signal for classification.

Define the differential equation
We solve the first-order ODE with the right-hand side function:

Sxy)=xty (18)
Specify the initial condition, let y,=1, x,=0

Initialize with the Euler method
Euler's method is used to generate the first 3 steps:

yi=voth- flxgv)=1.1
vo=vi+he flx),)=1.22 (19)
yi=nth- f(x,.0,)=1.3733

Define notation for Adams-Bashforth method, let  f,=/(x,.»,,)

Apply the Adams-Bashforth 3-step formula
This higher-order multistep method improves accuracy using previous evaluations:

Vo=t = Q3 16f 1 +5,2) (20)

Store the results as a feature group
The full trajectory of yny nyn values becomes:

Xs={y) g ERYS 1)
The global truncation error of the AB-3 method is:
Global error = O(h*) (22)

Convergence to exact solution
As step size h—0, the numerical solution approaches the true function:

limy, o X3 (h)—p(x) (23)

Classification presents the classification methodology, which includes two deterministic
components: a mathematically defined labeling rule and a supervised learning model built on the
K-Nearest Neighbors (KNN) algorithm. Together, these components provide a controlled
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environment for evaluating how structured numerical features influence class separation and
decision boundaries. The binary labels are assigned using a deterministic parity rule applied to the
aggregated feature values. For each instance, the feature vectors X;, X5, and X3 are computed
using Newton’s method, the Trapezoidal Rule, and the Adams-Bashforth method, respectively.
These are then summed element-wise to produce a scalar value S;= Zj (X1 j+ij+X3f)_ The class

label y; is determined by extracting the integer part of S;, denoted as L S,;1 ., and applying a
parity check:

0, 1ifL S;] iseven
y;-:{ (24)

1, ifL S,J isodd

This rule generates balanced and explainable binary labels while preserving deterministic
reproducibility. It also introduces a nonlinear decision boundary that depends on the dynamic
interplay among the three numerical methods. Once the labeled dataset {(X,y)}Y, is
constructed, we apply the K-Nearest Neighbors algorithm to perform classification. The full
feature vector X;=[X|, X5, X3] 1is treated as a point in high-dimensional Euclidean space. The
classifier assigns labels to new test samples based on the majority class among their & nearest
neighbors in the training set. We use standard Euclidean distance as the similarity measure. The
choice of & is empirically validated for optimal performance. The use of KNN in this context
allows for a transparent examination of how geometric patterns—originating from numerical
approximation behavior—affect classification outcomes. This methodology bridges deterministic
numerical computation and data-driven modeling, demonstrating that classical methods in
numerical analysis can give rise to structured, interpretable, and classifiable feature spaces
suitable for modern machine learning tasks.

Justification of Numerical Methods. We specifically chose Newton’s method, the
Trapezoidal Rule, and the Euler—-Adams-Bashforth scheme because each provides distinct
numerical properties that map naturally onto financial data features. Newton’s method offers
quadratic convergence, producing stable fixed-point approximations that highlight convergence
speed and error decay. The Trapezoidal Rule delivers second-order accuracy and smooth area-
based approximations, making it suitable for representing cumulative effects such as transaction
volumes or integrated volatility measures. Finally, the Euler—Adams-Bashforth scheme captures
sequential dynamics and temporal growth through higher-order multistep extrapolation, aligning
closely with autoregressive or momentum-driven behaviors observed in digital assets. While
alternative techniques such as Runge—Kutta or Simpson’s rule could have been used, our selection
balances interpretability, computational efficiency, and complementary signal textures. Together,
these methods provide convergence-, integration-, and dynamics-based features that enrich the
classification space with interpretable and diverse mathematical signatures.

2.4. Theoretical Guarantees: Convergence and Stability of Numerically Engineered Crypto
Features Restult

In this section, we formalize the convergence behavior and stability characteristics of the
numerical methods used to generate the feature space (X, X5, X3) for AVAX-USD log return
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classification. These methods—Newton’s root solver, the Trapezoidal Rule, and the Euler—
Adams-Bashforth (AB2) ODE integrator—are not only computational tools, but also theoretical
foundations for constructing structured, robust, and explainable features. We present a formal
theorem and supporting lemma to demonstrate how classical convergence results provide
mathematical guarantees for crypto signal feature engineering,

Theorem 2.1 (Structured Feature Convergence Theorem)

Let fi(x)=x-2, fA(x)=sin(x), and f;(t»)=x(0)+y(£), where x(¢) is the log-return signal of
AVAX. Define the numerically generated feature vector (X,X3,X3) as follows:

X is constructed by applying Newton’s method to f; with initial guess x, € (1,2).

X, is derived from approximating f; /> (x)dx using the Trapezoidal Rule with step size /.

X5 1s computed by solving %= 5(2y) with initial value y(0)=1, seeded by Euler’s method and
propagated via AB2.

Then, under standard smoothness and boundedness assumptions:

X,—+2 with quadratic convergence rate o(e).

X,—2 with global error bounded by Ch* for some C>0.

X;(t,)—y(1,) with second-order global convergence O(h?%).

Moreover, the full feature vector X=(X;, X5, X3) converges in norm to a theoretically derived
fixed point X* with:

/X=X 1/ 2<C P +Cae? (25)

for some constants C,C,, dependent on the numerical method and signal smoothness.

Proof Sketch - For Newton’s method: Taylor expand f(x,) around 2, yielding the classical

quadratic convergence bound under f(x)#0. - For the Trapezoidal Rule: use the composite error
estimate:

o (=)} ,
|7, I|wafg[%§]|f €3] (26)

yielding second-order convergence. - For AB2: from multistep method theory, consistency (from
truncation error O(h*)) and zero-stability (bounded error propagation) imply global second-order
convergence O(h*) . Lemma 2.1 (Bounded Feature Stability under Market Perturbation) Let
X=x+t0, be a perturbed AVAX log-return signal, where |J,|<e and x, is bounded. Then, the
numerically generated features X;, X, X3 from %, satisfy:

WX~X;//<C- € fori=1,2,3 (27)

where C depends on the Lipschitz continuity of f; and the discretization step size / .
Interpretation This lemma guarantees numerical feature robustness: small perturbations in AVAX
log returns do not substantially affect the derived features, making them reliable inputs for
classification tasks. Combined with Theorem 2.1, we conclude that the system possesses
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predictable convergence structure and bounded response to market uncertainty. Together, these
results justify the use of classical numerical methods for signal stabilization and class-separable
transformation in cryptocurrency analytics, bridging deterministic theory with data-driven
classification in AVAX market dynamics.

Lemma 2.1 (Feature Stability Under Market Perturbation) Let #(£)=r(r)+e(f) be a perturbed
version of the AVAX log-return signal, with //&(¢) /<6 . Then, the numerically constructed
features X;, X,,and X; from 7(¢) satisfy:

X=X/ <C,r P, i=1,2,3, (28)

where p; € {1,2} denotes the convergence order of the method used and C; are constants that
depend on the method and signal smoothness.

Theorem 2.2 (KNN Label Stability under Bounded Perturbations in AVAX Features) Let
Y=KNN(X:D) € {0,1} denote the class label of feature vector XER? predicted using a KNN
classifier trained on dataset DCR3x{0,1}. Suppose that X is a perturbed feature vector with
// X=X // <e, and that the minimum interclass distance in D satisfies:

L.
KEH}%H//)Q_AG / (29)

Then, the classification output remains stable under perturbation:
KNN(Y:D)=KNN(X:D) (30)

Rationale for Using KNN

In this study, we deliberately focused on KNN as the primary classifier because it directly
reflects the geometric separability induced by numerically engineered features. Unlike parametric
models such as logistic regression or hierarchical models such as decision trees, KNN makes
decisions purely based on distances in the constructed feature space. This aligns precisely with
our research objective: to evaluate whether deterministic numerical methods create structured,
interpretable, and class-separable representations. By using KNN exclusively, we isolate the
contribution of the feature construction itself without introducing confounding factors from
additional model-specific assumptions or hyperparameters. Moreover, KNN’s transparency
enables intuitive visualization of decision boundaries, which is central to demonstrating
interpretability — a core contribution of this work.

From a mathematical standpoint, KNN is uniquely aligned with the structured feature space
generated by deterministic numerical methods. Let x€RY denote a feature vector composed of
numerical signals (X3, X3,X3). KNN assigns a class label 7(x) based on:

y(x)=mode{ylx€N,(x)}, (31)

where N, (x) is the set of knearest neighbors of x under Euclidean distance. This decision rule
depends only on geometric proximity and does not impose assumptions of linearity, additivity, or
monotonicity — properties essential for showing that convergence-, integration-, and dynamics-
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based features yield geometrically separable clusters. By contrast, logistic regression assumes a
parametric log-odds model,

1
1+exp(—,€Tx) !

Pr(y=1|x)= (32)

which enforces a global linear boundary in the feature space and therefore cannot capture the
nonlinear, parity-based decision structure intentionally embedded in our labeling rule. Decision
trees, on the other hand, recursively partition the feature space by axis-aligned thresholds,

h(x=%, G1(x€R) (33)

where R; are disjoint rectangular regions. While interpretable, such axis-aligned splits are not

well suited to the continuous, curvature-driven boundaries induced by the Trapezoidal and
Adams—Bashforth features.

Taken together, these contrasts show that KNN is the most appropriate model for the current
study: it preserves local geometry, adapts naturally to nonlinear separability, and yields visually
interpretable.

3. Result
3.1. Results of Numerically Engineered Features

This section underscores the complementary value of integrating generated numerical data
and AVAX-USD log return-derived features for constructing a robust and interpretable
modeling framework. The synthetic dataset—produced using Newton’s Method, the Trapezoidal
Rule, and the Euler—Adams-Bashforth scheme—demonstrates theoretical convergence, smooth
integration, and dynamic evolution under controlled conditions. This provides a mathematically
traceable and pedagogically useful benchmark for observing idealized numerical behaviors. In
contrast, the AVAX-based features embed real-world variability and market-driven fluctuations
while still maintaining structural coherence through the same numerical methods. By applying
identical algorithms to both contexts, the study bridges deterministic theory and empirical finance,
revealing how numerical properties manifest under real data conditions. This dual approach not
only validates the consistency and reliability of the numerical transformations but also enriches
the feature space, enabling deeper exploration of algorithmic sensitivity, model generalization,
and dynamic behavior across synthetic and financial domains.

AVAX-USD Dataset and Preprocessing The empirical analysis is based on AVAX-USD daily
trading data spanning from August 31, 2023 to August 31, 2024, comprising 367 observations.
Each record includes the standard OHLCV (Open, High, Low, Close, Adjusted Close, Volume)
fields. For consistency, we used the daily adjusted closing price series to compute log returns,
defined as:

rFln( s ) (34)

Pr1
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where P; is the adjusted closing price on day ¢ This produces a stationary return series with
366 values. To ensure comparability across numerical methods, the log return series was
normalized via z-scoring (subtracting the mean and dividing by the standard deviation), producing
scale-invariant features. Outliers exceeding three standard deviations from the mean were
winsorized to limit the impact of extreme daily fluctuations, which are common in cryptocurrency
markets. Finally, a Gaussian smoothing kernel with a small bandwidth was applied to mitigate
microstructure noise while preserving volatility clustering. This preprocessing pipeline guarantees
stable, reproducible inputs for the numerical feature construction, while maintaining the intrinsic
volatility structure characteristic of digital assets. Reviewer comment: “The handling of AVAX-
USD log returns lacks detail. The authors should specify time window, frequency (daily/hourly),
normalization, and noise filtering to ensure reproducibility.”

In this study, we generated 5000 data points for each of the three numerically engineered
feature dimensions—Xi, X», and Xs—using classical methods that capture distinct mathematical
behaviors: root-finding, integration, and ODE solving. X: was derived from Newton’s Method
applied to f(x)=x>—2, producing values that converge tightly around V2, with minor deviations
due to controlled noise introduced to mimic real-world computational perturbations. X: was
constructed using the Trapezoidal Rule to approximate fox sin (x) dx , yielding values closely
centered around the true integral of 2, with smooth and symmetric variation reflecting stable
integration. Xs was formed by solving j—i=x+y, initialized by Euler’s method and extended with

the Adams-Bashforth 2-step scheme; its values display a positively skewed, upward-trending
distribution consistent with the ODE’s exponential-like growth. Collectively, these features
exhibit bounded error, interpretability, and distinct numerical textures well-suited for robust
classification tasks.

Figure | confirms these interpretations with histograms displaying the distributions of X1, X2,
and X3. Each distribution exhibits properties consistent with the respective numerical technique
used to generate it. X1 shows fast-converging and tightly clustered values, X2 demonstrates high-
precision integration, and X3 reflects smooth and gradually increasing solutions typical of
ordinary differential equations. Together, these features provide a robust, diverse input space for
the KNN classifier and allow for deeper analysis of numerical behavior in data science contexts.

Newton Method (X1) Distribution Trapezoidal Rule (X2) Distribution Euler-Adams-Bashforth (X3) Distribution
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2500 4000
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Figure 1. Histograms displaying the distributions of X1, X2, and X3
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Figure 2 presents three time series plots corresponding to the numerically engineered features
X, X5, and Xj, each derived from the daily log returns of AVAX-USD using distinct numerical
schemes. These features were computed using Newton’s method for root-finding, the Trapezoidal
Rule for numerical integration, and a hybrid Euler-Adams-Bashforth (AB2) method for solving a
first-order ordinary differential equation (ODE), respectively. The intention is to capture diverse
numerical behaviors—convergence, integration precision, and dynamic growth—within a
structured feature space informed by real financial data. The first subplot illustrates the evolution
of X, obtained by applying Newton’s method to the absolute log returns augmented by a small

constant offset. The method converges quadratically to v2, and this behavior is reflected in the
plot where all values stabilize tightly around 1.41422 across the time period. This feature displays
almost no temporal fluctuation, reinforcing the known stability and efficiency of Newton’s
method when applied to well-posed root-finding problems. The consistency of X; serves as a
baseline structural component within the feature space. In contrast, the second subplot plots X5,
which approximates the definite integral fon sin (x)dx using the Trapezoidal Rule with a variable
number of subintervals driven by the magnitude of AVAX log returns. The resulting values
cluster closely around the analytical result of 2, though they exhibit minor fluctuations due to
changes in discretization density. This controlled variability reflects the second-order accuracy of
the method and highlights its sensitivity to input granularity. X, thus introduces smooth
curvature into the numerical feature space, mirroring patterns seen in area-under-curve analyses in
signal processing and financial engineering. The third subplot portrays the behavior of Xj,
constructed by solving the ODE dy/dx=x+y, initialized using Euler’s method and extended using
the Adams-Bashforth 2-step approach. The time step /4 is adapted dynamically to reflect the
magnitude of daily log returns, resulting in a broadened and upward-trending trajectory. Unlike
X, and X, , this feature displays nonlinear, growth-like behavior with discernible temporal
evolution. X5 captures the compounding nature of a dynamical system influenced by historical
market movements, making it an essential component for modeling latent temporal structures in
asset return dynamics. Collectively, these three features form a robust, interpretable, and
mathematically principled input space derived from real-world financial data. Each method
contributes a unique numerical texture, which when combined, enables further analysis of
structural patterns, model interpretability, and numerical generalizability across machine learning
and financial forecasting tasks.
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Figure 2. time series plots corresponding to the numerically engineered features X, X5, and Xj

3.2. Decision Boundary and Error Visualization Results

This section illustrates the importance of combining generated data with real-world AVAX
log return data to construct a numerically stable and interpretable feature space for classification
tasks. While AVAX log returns provide authentic financial dynamics and market-driven
variations, the application of classical numerical methods (Newton’s root-finding, Trapezoidal
integration, and Euler—Adams-Bashforth ODE solving) imposes mathematical structure,
smoothness, and error-controllable behavior onto the features. This fusion leverages the richness
of real data with the predictability and theoretical grounding of deterministic algorithms, enabling
the visualization of meaningful decision boundaries and quantifiable error dynamics. It creates a
bridge between stochastic financial signals and analytically verifiable transformations, offering
both interpretability and robustness in downstream modeling, particularly in classification tasks
where geometric separability and label stability are crucial.

Figure 3 presents a 3D KNN decision boundary visualization based on a structured feature
space generated from three deterministic numerical methods: X1 (Newton’s Method for root-
finding), X2 (the Trapezoidal Rule for numerical integration), and X3 (the Euler + Adams-
Bashforth method for solving ordinary differential equations). These features are plotted along the
X, Y, and Z axes respectively. Each point in the figure represents a training observation labeled
based on the integer sum of its feature values. Green markers indicate Class 0, typically where the
sum is even, while red markers represent Class 1, where the sum is odd.

The black star in the lower left marks the test point located at (0, 0, 0), which will be classified
based on its proximity to the surrounding labeled points using the KNN algorithm. This
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configuration provides a visual interpretation of how the model makes local decisions in high-

dimensional numeric space.

The decision boundary displayed is nonlinear, adapting to local geometries and the structured
variation introduced by the numerical algorithms. X1 (Newton) contributes low-variance values
tightly clustered near the root, X2 (Trapezoidal) forms a narrow and stable band between 1.97 and
2.03 reflecting integral precision, and X3 (Euler + AB) introduces broad vertical variation
consistent with the exponential growth behavior of differential equations. These combined effects
define a geometrically interpretable and class-separable feature space, allowing KNN to draw
smooth and adaptive boundaries that minimize classification error, even in the presence of

nonlinear structures.

Figure 4 visualizes the decision boundary formed by numerically engineered features X;, X5,
and X3, extracted from AVAX-USD log returns using Newton’s method, the Trapezoidal Rule,
and a hybrid Euler-Adams-Bashforth solver, respectively. Each point in the 3D space is colored
based on a deterministic binary classification rule: if the integer part of the sum X;+X,+X; 1s
even, the point is labeled as Class 0 (green); if odd, it is Class 1 (red). The result is a layered, non-
linear decision boundary that reflects the mathematical textures of the underlying numerical
methods—tight convergence near v2 from Newton’s method, stable integration around 2 from
the Trapezoidal Rule, and dynamic growth from the ODE solution. This structured geometric
partitioning highlights the capability of classical numerical techniques to produce feature spaces
with rich interpretability and inherent class separability, even in the absence of traditional
statistical learning algorithms.

3D KNN Visualization with Test Point (0, 0, 0)
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*  Test Point
3.C
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Figure 3. 3D KNN decision boundary visualization
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Decision Boundary Visualization Based on Numerical Feature Parity
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Figure 4. 3D Decision Boundary Induced by Numerical Feature Parity from AVAX Log Returns

In addition to boundary visualization, we conducted a detailed analysis of numerical errors
from each method, presented in Figure 5. This figure contains three subplots:

(1) Figure 5a illustrates the global error behavior of the Adams-Bashforth method as a function
of the step size hhh. As expected, the error decreases rapidly with smaller step sizes due to the
method’s fourth-order convergence. The plot confirms that small steps yield high-precision ODE
solutions, essential for creating reliable values in X3.

(2) Figure 5b shows the truncation error from the Trapezoidal Rule as the number of intervals
nnn increases. The error diminishes at a predictable rate, consistent with second-order accuracy.
This aligns with the observed precision in X2 values, which remained tightly centered around 2,
the true value of the definite integral of sin(x) over [0, 7].

(3) Figure 5c displays the quadratic convergence of Newton’s method, where the error decays
exponentially across iterations. Each iteration sharply reduces the deviation from the root,
producing a stable and highly concentrated distribution in X1. The log-scaled vertical axis clearly

illustrates the rapid error drop-off, even with minimal iterations.

These results demonstrate not only the effectiveness of KNN in classifying data from numerical
sources but also the robustness and consistency of the numerical methods used to generate the
data. The clear decision regions, low classification errors, and mathematically verifiable
convergence behaviors suggest that numerically constructed features are not only viable but
potentially advantageous for structured classification problems.

31



Journal of Global Economic Insights, 2025, 1(2), 17-39 S~
https://doi.org/10.71204/b2¢2rb55 CacHorax

Figure 3a: Adams-Bashforth Global Error Figure 3b: Trapezoidal Rule Truncation Error Figure 3c: Newton Method Error Decay
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Figure 5. Numerical Errors From Each Method

Figure 6 presents a comprehensive error analysis of the three numerical methods applied to
AVAX log return-derived inputs:

(1) Figure 6a shows that the Euler + Adams-Bashforth method exhibits rapid error decay as the
step size 1 decreases, confirming its global fourth-order accuracy. This validates its suitability for
generating the dynamic feature X3, where smaller / leads to more precise ODE solutions.

(2) Figure 6b highlights the Trapezoidal Rule’s second-order convergence, where increasing
the number of subintervals results in reduced approximation error for the integral of sin(x) over
[0,z]. This stability supports the precision of the integration-based feature X,.

(3) Figure 6¢ demonstrates the quadratic convergence of Newton’s method, where the log-
scaled error decreases exponentially with each iteration. The tight clustering of X values around

V2 ensures this feature remains numerically stable and analytically bounded.
Together, these plots validate the robustness and mathematical integrity of the generated
features X;, X,, and Xj, reinforcing the interpretability and reliability of using numerical

methods on real financial data.

Figure 5a. AB2 Method Global Error vs. Step Size h
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Figure 6. Comprehensive Error Analysis Of The Three Numerical Methods Applied To AVAX Log
Return
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To contextualize the value of numerically engineered features, we compared them with two
common financial indicators: realized volatility (computed as the standard deviation of log returns
over a rolling window) and simple moving averages of prices. These baseline indicators were
included in the feature space and evaluated under the same KNN classifier. Results showed that
while traditional indicators provided some separability, the numerically derived features produced
tighter clusters and more stable decision boundaries. This suggests that the proposed approach
adds incremental value by capturing convergence- and dynamics-based structures that are not
directly observable in conventional indicators.

3.3. The Joint Feature Interaction Analysis

The joint feature interaction analysis highlights the value of combining synthetically generated
data with AVAX-derived real-world data, as each contributes distinct insights into the structure
and separability of the numerically engineered feature space. The synthetic features—generated
via Newton’s method, the Trapezoidal Rule, and the Euler-Adams-Bashforth ODE solver—offer
a controlled, noise-free environment ideal for validating theoretical behaviors such as error
convergence, deterministic label transitions, and geometric class boundaries. When applied to real
AV AX log return data, the same numerical techniques preserve these structured behaviors while
incorporating authentic market variability, creating an interpretable yet resilient feature space.
This dual-data approach bridges theory and empirical practice, enabling the observation of how
convergence stability and dynamic numerical growth translate into actionable machine learning
inputs under realistic conditions.

To further investigate how feature interactions influence classification, we analyzed pairwise
scatter plots of the feature combinations. The Xi—X: plot shows tightly clustered classes around
stable values, where Newton’s low-variance outputs intersect with the slightly fluctuating
integrals from the Trapezoidal Rule. Xi—Xs reveals broader vertical dispersion due to the ODE-
driven growth of X5, while Xi remains concentrated, resulting in vertical boundary stratifications.
Figure 7 reveals how each pairwise combination contributes to class separability in the structured
feature space. The X1 vs X2 plot shows a compact clustering of both classes around a stable
region, with clear boundary behavior concentrated near the integral value of X2. While Newton’s
method (X1) converges rapidly and exhibits low variance, Trapezoidal integration (X2)
introduces slight fluctuations due to the influence of step counts and rounding. Despite some
overlap, the joint space shows distinguishable layering between class 0 and class 1, especially
where the sum of X1 and X2 approaches an integer value transition that flips the classification
label.

X1 vs X2 16217 X1 vs X3 16217 X2 vs X3

.
+ AB)
Al

X3 (Euler + AB)

; 05 05
.l

196 0.0 - 0.0

1.0 11 12 13 14 15 1.0 11 12 13 14 15 196 197 198 199 200 201 202 203
X1 (Newton) X1 (Newton) X2 (Trapezoidal)

Figure 7. Joint Feature Interaction Plot

33



Journal of Global Economic Insights, 2025, 1(2), 17-39
https://doi.org/10.71204/b2c2rb55

Figure 8 provides a comprehensive view of the joint feature interactions among the three
numerically engineered dimensions—X1 (Newton’s method), X2 (Trapezoidal Rule), and X3
(Eulert Adams-Bashforth method)—derived from AVAX log return data. Each subplot
represents a pairwise combination of these features, colored by binary class labels determined by
the parity of the floor of the sum L X;+X,+X3] . The X1 vs X2 scatter plot reveals a compact
cluster with minimal variance in both dimensions. This reflects the inherent stability of the

Newton root approximation near v2 and the high precision of the Trapezoidal integration near 2.
Although some overlap occurs between Class O and Class 1 in this plane, transitions in label
assignments correspond closely to fine shifts around integer-sum boundaries, validating the
sensitivity of the feature space to subtle numerical perturbations. In contrast, the X1 vs X3 and X2
vs X3 plots demonstrate how the X3 dimension introduces vertical structure and class separation
through its dynamic range. Euler-initialized AB2 solutions to the ODE dy/dx=x+y yield growing
values that vertically stretch the distribution. The X1 vs X3 interaction shows horizontal stability
(X1) against vertical transitions (X3), suggesting that class assignment is heavily influenced by
cumulative ODE growth. The X2 vs X3 combination presents the clearest separation, as the
tightly centralized X2 axis intersects with stepped qrowth patterns in X3, forming stratified layers
of class labels. These patterns confirm that numerically generated features are not only
mathematically consistent but also geometrically expressive, yielding a feature space with strong
local interpretability and global separability—well suited for algorithms like KNN.
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Figure 8. AVAX Joint Feature Interactions Plot
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4. Discussion

This study demonstrates how classical numerical methods—Newton’s Method, the Trapezoidal
Rule, and the Euler—Adams-Bashforth method—can be effectively repurposed as feature
generators for machine learning classification. The integration of both synthetically generated
data and AVAX log return-based numerical transformations reinforces the core hypothesis:
mathematically principled methods can induce structured, interpretable, and -class-
separable feature spaces. By visualizing decision boundaries, convergence behavior, and joint
feature interactions, we showed that each numerical technique contributes a unique geometric
"texture" to the resulting data landscape, enabling nonlinear decision rules like those produced by
KNN to operate with high local interpretability.

Beyond their mathematical interpretation, the visualizations provide actionable insights for
practitioners. For example, the Newton-derived feature shows minimal dispersion, suggesting its
utility as a stability anchor in portfolio signal design. The Trapezoidal-based feature resembles
cumulative indicators such as integrated volatility, offering a smoothed representation of risk
exposure. The Euler—Adams-Bashforth feature, with its dynamic upward trend, mirrors growth-
like signals often used in momentum strategies. Thus, decision boundaries and error curves are
not purely abstract but highlight how deterministic approximations can be mapped to stability,
risk, and momentum concepts familiar to financial analysts.

However, this approach is not without its limitations. First, the deterministic labeling
strategy—based on parity of the floor of the summed features—while mathematically elegant,
may not reflect real-world classification labels in practical domains. Second, the interpretability
and smooth class boundaries seen in the synthetic and AVAX examples may not generalize to all
types of financial or time-series data, particularly those with high-frequency noise or abrupt
structural breaks. Additionally, while KNN serves well for visual explanation and local decision-
making, it may underperform in high-dimensional or sparse settings unless complemented by
dimensionality reduction or adaptive weighting schemes. Lastly, the current framework does not
account for temporal dependencies explicitly, treating all input vectors as independent
observations, which may overlook sequential correlations in financial applications.

The framework offers potential utility in several real-world crypto finance tasks. For prediction,
the engineered features can serve as inputs to forecasting models where stability and bounded
error are desirable. For anomaly detection, deviations from expected numerical convergence or
integration patterns may signal irregularities such as market manipulation or sudden regime shifts.
For risk management, bounded error properties can be interpreted as measures of numerical
stability under volatility, providing structured indicators for stress testing. These applications
highlight how numerical theory can transition from abstract computation to actionable financial
insights.

5. Conclusion and Future Work

This paper presents a novel framework for generating structured classification features using
classical numerical methods. By systematically applying Newton’s root-finding, Trapezoidal
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integration, and Euler—Adams-Bashforth ODE solvers, we constructed three mathematically
distinct feature groups that, when combined, yielded a robust and interpretable feature space for
classification tasks. We validated the approach using both synthetic simulations and real AVAX-
USD log return data, revealing consistent geometric patterns, stable convergence, and highly
separable decision boundaries across multiple perspectives. This integration of deterministic
computation with machine learning classification offers a bridge between analytical rigor and
data-driven model design.

Despite these advantages, several limitations must be acknowledged. The deterministic parity-
based labeling rule is inherently artificial and may not map directly to real-world finance labels;
its main purpose here is to establish a mathematically controlled testbed. The current framework
focuses on binary classification, and scaling to multi-class settings or higher-dimensional feature
spaces would require additional validation. High-frequency, noisy data—common in crypto
markets—pose challenges, as numerical stability guarantees may degrade under extreme volatility
or structural breaks. Moreover, computational costs are higher than standard feature engineering
approaches, particularly when multiple numerical solvers are applied to large datasets. Finally,
while the methods are interpretable, their generalizability to assets beyond AVAX-USD requires
further empirical testing to assess robustness across market contexts.

Future work will proceed along three prioritized directions. First, extending the framework to multi-
class settings, such as distinguishing between volatility regimes (low, medium, high), will enhance its
immediate financial relevance. Second, incorporating temporal dependencies through recurrent numerical
schemes or hybrid models (e.g., numerical features embedded into LSTM networks) will enable sequential
prediction tasks such as price forecasting. Third, benchmarking computational efficiency against standard
technical indicators and feature engineering pipelines will clarify scalability in high-frequency
environments. These targeted pathways move beyond broad proposals and outline concrete methodological
extensions for advancing numerical-finance integration.
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